编号 | 名称 | 通过率 | 通过人数 | 提交人数 |
√水题(队友写的 | 91% | 1122 | 1228 | |
— | 57% | 68 | 119 | |
最大子矩阵和 | 51% | 182 | 353 | |
缩点/二分/数位dp | 11% | 23 | 209 | |
凸包 | 57% | 327 | 567 | |
— | 15% | 15 | 95 | |
√找规律 | 74% | 456 | 609 | |
— | 51% | 17 | 33 | |
√线段树 | 77% | 861 | 1110 | |
最短路 | 57% | 44 | 77 |
![](https://images.cnblogs.com/OutliningIndicators/ContractedBlock.gif)
![](https://images.cnblogs.com/OutliningIndicators/ExpandedBlockStart.gif)
#include#include #include #include #include #include #include #include #include
![](https://images.cnblogs.com/OutliningIndicators/ContractedBlock.gif)
![](https://images.cnblogs.com/OutliningIndicators/ExpandedBlockStart.gif)
#include#include #include #include #include #include #include #include #include
![](https://images.cnblogs.com/OutliningIndicators/ContractedBlock.gif)
![](https://images.cnblogs.com/OutliningIndicators/ExpandedBlockStart.gif)
#include#include #include using namespace std;int p[105];int l[105];struct Node{ int day; int cost;}node[105];int main(){ int n, m; while (scanf("%d%d", &n, &m) != EOF) { memset(l, 0, sizeof(l)); for (int i = 0; i < n; i++) { scanf("%d", &p[i]); } int ln,x; scanf("%d", &ln); for (int i = 0; i < ln; i++) { scanf("%d", &l[i]); } sort(l, l + ln); int now = 0; int now_node = 0; for (int i = 0; i < n; i++) { if (i == l[now]&&now
![](https://images.cnblogs.com/OutliningIndicators/ContractedBlock.gif)
![](https://images.cnblogs.com/OutliningIndicators/ExpandedBlockStart.gif)
#include#include #include #include #include #include #include #include #include
![](https://images.cnblogs.com/OutliningIndicators/ContractedBlock.gif)
![](https://images.cnblogs.com/OutliningIndicators/ExpandedBlockStart.gif)
#include#define mem(a,b) memset((a),(b),sizeof(a))#define MP make_pair#define pb push_back#define fi first#define se second#define sz(x) x.size()using namespace std;typedef long long ll;const int INF=0x3f3f3f3f;const ll LLINF=0x3f3f3f3f3f3f3f3f;const double PI=acos(-1.0);const double eps=1e-8;const int MAX=2e5+10;const ll mod=1e9+7;int sgn(double x){ if(fabs(x) 0?1:-1; }struct Point{ int id; double x,y; Point(){} Point(double a,double b) { x=a; y=b; } void input() { scanf("%lf%lf",&x,&y); }};typedef Point Vector;Vector operator -(Vector a,Vector b){ return Vector(a.x-b.x,a.y-b.y);}bool operator <(Point a,Point b){ return a.x graham(vector p){ int n,m,k,i; sort(p.begin(),p.end()); p.erase(unique(p.begin(),p.end()),p.end()); n=p.size(); m=0; vector res(n+1); for(i=0;i 1&&cross(res[m-1]-res[m-2],p[i]-res[m-2])<=0) m--; res[m++]=p[i]; } k=m; for(i=n-2;i>=0;i--) { while(m>k&&cross(res[m-1]-res[m-2],p[i]-res[m-2])<=0) m--; res[m++]=p[i]; } if(n>1) m--; res.resize(m); return res;}char ans[111];int main(){ int t,n,i; scanf("%d",&t); while(t--) { scanf("%d",&n); vector v; Point p[111]; for(i=0;i res=graham(v); mem(ans,0); if(sz(res)==n) { if(n==3) { puts("NO"); continue; } int flag=0; for(i=0;i
![](https://images.cnblogs.com/OutliningIndicators/ContractedBlock.gif)
![](https://images.cnblogs.com/OutliningIndicators/ExpandedBlockStart.gif)
#include#define rep(i,j,k) for((i)=(j);(i)<=(k);++i)#define per(i,j,k) for((i)=(j);(i)>=(k);--i)using namespace std;typedef long long ll;inline void cmin(ll &x,ll y){ if(y x)x=y;}const ll N = 1000006;const ll inf = 1LL<<60;bool ok[N]; struct edge{ll v,next,w;}e[N];ll dep[N],last[N],s[N],d[N],fa[N],id1[N],id2[N],K,L,n,i,l,r,u,v,w,cnt,top,stk[N];ll inline read(){ char ch=getchar();ll z=0,f=1; while(ch<'0'||ch>'9'){ if(ch=='-')f=-1;ch=getchar();} while(ch>='0'&&ch<='9'){z=z*10+ch-'0';ch=getchar();} return z*f;}void add(ll u,ll v,ll w){ e[++cnt]=(edge){v,last[u],w};last[u]=cnt; e[++cnt]=(edge){u,last[v],w};last[v]=cnt;}void dfs(ll x,ll y,ll &mx){ if(dep[x] > dep[mx]) mx = x; fa[x] = y; ll i; for(i=last[x];i;i=e[i].next) if(!ok[e[i].v] && e[i].v!=y){dep[e[i].v] = dep[x] + e[i].w; dfs(e[i].v,x,mx);}}ll getlength(ll root,ll &st,ll &ed,ll &len){ dep[st = root] = 0; dfs(root,0,st); len = dep[st]; dep[ed = st] = 0; dfs(st,0,ed); return dep[ed];}bool cmp1(ll x,ll y){ return s[x]+d[x] K){i=id2[l++]; cmax(mx,s[i]+d[i]);} if(l>1){ ll mi2=s[id2[1]]-d[id2[1]]; l1=mx+s[top]+L-K; cmin(r1,mi2+s[j]-d[j]-L+K); l2=s[top]+L-K-mi2; cmin(r2,s[j]-d[j]-mx-L+K); } } if(l1>r1) return 0; k = l = top; p = q = 1; rep(i,2,top)if(s[i]*2>=l1+l2&&s[i]*2<=r1+r2){ while(k>0 && s[i]+s[k]>=l1) --k; while(l>0 && s[i]+s[l]>r1) --l; while(p<=top && s[i]-s[p]>=l2) ++p; while(q<=top && s[i]-s[q]>r2) ++q; if(max(q,k+1)<=min(p-1,min(l,i-1))) return 1; } return 0;}int main(){ int t; scanf("%d",&t); while (t--) { scanf("%lld",&n); L=1; cnt = 0; rep(i,0,n) last[i] = ok[i] = 0; rep(i,1,n-1){u=read();v=read();add(u,v,1);} ll st,ed,len,l=-1,r=getlength(1,st,ed,len); stk[top = ok[ed] = 1] = ed; for(i=ed;i!=st;i=fa[i]) ok[stk[++top] = fa[i]] = 1; reverse(stk+1,stk+top+1); rep(i,1,top) s[i] = dep[stk[i]]; rep(i,1,top) cmax(l,getlength(stk[i],st,ed,d[i])-1); rep(i,1,top) id1[i] = id2[i] = i; sort(id1+1,id1+top+1,cmp1); sort(id2+1,id2+top+1,cmp2); while(l+1>1; if(solve(K)) r=K; else l=K; } printf("%lld\n",r); } return 0;}
![](https://images.cnblogs.com/OutliningIndicators/ContractedBlock.gif)
![](https://images.cnblogs.com/OutliningIndicators/ExpandedBlockStart.gif)
import java.io.OutputStream;import java.io.IOException;import java.io.InputStream;import java.io.PrintWriter;import java.util.StringTokenizer;import java.math.BigInteger;import java.io.IOException;import java.io.BufferedReader;import java.io.InputStreamReader;import java.util.ArrayList;import java.io.InputStream;/** * Built using CHelper plug-in * Actual solution is at the top */public class Main { public static void main(String[] args) { InputStream inputStream = System.in; OutputStream outputStream = System.out; InputReader in = new InputReader(inputStream); PrintWriter out = new PrintWriter(outputStream); Task2 solver = new Task2(); int testCount = Integer.parseInt(in.next()); for (int i = 1; i <= testCount; i++) solver.solve(i, in, out); out.close(); } static class Task2 { BigInteger C(int n, int m) { BigInteger ans = BigInteger.valueOf(1); for (int i = 1; i <= m; i++) { ans = ans.multiply(BigInteger.valueOf(n - i + 1)); } for (int i = 2; i <= m; i++) { ans = ans.divide(BigInteger.valueOf(i)); } return ans; } public void solve(int testNumber, InputReader in, PrintWriter out) { int n = in.nextInt(); int[] a = new int[n + 1]; int[] b = new int[n + 1]; for (int i = 1; i <= n; i++) { a[i] = in.nextInt(); b[a[i]] = i; } ArrayListarr = new ArrayList<>(); int now = 1; for (int i = 2; i <= n; i++) { if (a[i - 1] != n && (a[i] == n || b[a[i - 1] + 1] > b[a[i] + 1])) { arr.add(now); now = 1; } else { now++; } } arr.add(now); if (arr.size() > 26) { out.println(0); } else { int sz = arr.size(); BigInteger[][] dp = new BigInteger[sz + 1][27]; for (int i = 0; i <= sz; i++) { for (int j = 0; j <= 26; j++) { dp[i][j] = BigInteger.valueOf(0); } } dp[0][0] = BigInteger.valueOf(1); for (int i = 0; i < sz; i++) { for (int j = 0; j < 26; j++) { for (int k = 1; j + k <= 26; k++) { dp[i + 1][j + k] = dp[i + 1][j + k].add(dp[i][j].multiply(C(arr.get(i) + k - 2, k - 1))); } } } // out.println(dp[sz][26]); BigInteger ans = BigInteger.valueOf(0); for (int i = 1; i <= 26; i++) { ans = ans.add(dp[sz][i]); } out.println(ans); } } } static class InputReader { public BufferedReader reader; public StringTokenizer tokenizer; public InputReader(InputStream stream) { reader = new BufferedReader(new InputStreamReader(stream), 32768); tokenizer = null; } public String next() { while (tokenizer == null || !tokenizer.hasMoreTokens()) { try { tokenizer = new StringTokenizer(reader.readLine()); } catch (IOException e) { throw new RuntimeException(e); } } return tokenizer.nextToken(); } public int nextInt() { return Integer.parseInt(next()); } }}
B:java,26^3 dp,http://blog.csdn.net/skywalkert/article/details/51731556(在 cdoj 上也有一个
C:枚举上下界变成最大子段和,变成 dp[i][0..1],C 直接卡上下界降维。开个数组记录下压缩这一列的最小值
我是枚举上下边界然后单调栈 //
dp[前i列][换了j次][有没有开始选区间]
二维rmq(×)
你用单调栈就不用rmq了
。
区间最小值就是 v[u][d][i]=min(v[u][d-1][i],a[d][i]) 然后u d不用存
就和一般的最大子矩阵和一样做
D:http://uoj.ac/problem/298(UOJ原题)抓一条直径,在上面选两个点连,二分答案之后考察可行性,点对的可行区域是一个菱形交(菱形交是百度之星原题)
(如果原本不能满足条件那么就要走这条新边
E:n<3 直接NO;n=3除了共线都是NO;n>=4 取前四个点 讨论一下就行
G:G 是个 TC 原题改,是数论。把这个图对偶一下,考察有多少个正方形被走过。发现是 (m-1)(n-1)/g^2,每个正方形内部一条对角线被走过,有 g-1 个。
J:J直接建图跑最短路,每条 1 边中间加个虚点拆成两个 0.5 就可以 BFS 了